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Abstract

The dynamics of an ensemble of linear disturbances in boundary-layer flows at various Reynolds
numbers is studied through an analysis of the transport equations for the mean disturbance
kinetic energy and energy dissipation rate. Effects of adverse and favorable pressure-gradients
on the disturbance dynamics are also included in the analysis. Unlike the fully turbulent regime
where nonlinear phase scrambling of the fluctuations affects the flow field even in proximity to
the wall, the early stage transition regime fluctuations studied here are influenced across the
boundary layer by the solid boundary. In addition, the dominating dynamics in the disturbance
kinetic energy equation is governed by the energy production, pressure-transport and viscous
diffusion - also in contrast to the fully turbulent regime. For the disturbance dissipation rate, a
dynamic balance exists between the destruction and diffusion of dissipation.



1 Introduction

A current challenge in the prediction of wall-bounded turbulent flow fields within the realm
of single-point closures is the inability to consistently predict the (upstream) flow field natural
transition region. While some transition-sensitized turbulence models. applicable to naturally
transitioning flows, exist in the literature,{1, 2, 3] their development has been based more on
empirical grounds rather than on first principles. As such, their range of applicability is confined
to flows containing the same dynamic features as the “calibration flows™ the models were de-
signed for. In contrast, transition-sensitized turbulence models, applicable to flows with by-pass
transition, have been extensively studied and refined over the last decade (e.g. see Steelant and
Dick[4] and Savill[5]).

Motivated by the success of such models in flows with by-pass transition, a methodology
is pursued here that can lead to the development of models applicable to generic flows in a
natural, low-disturbance environment. These models have immediate use in the prediction of
many flow fields including complex aerodynamic flows such as flows over high-lift devices. While
transition dynamics and transition models have been and continue to be studied and developed,
their applicability is confined to the understanding and prediction of transition. On the other
hand RANS-type closure models, for example, are used to predict entire flow fields. From
these predictions, lift and drag characteristics of aerodynamic vehicles are obtained for use in
design and flow control. Even in simple flows over flat surfaces, current RANS-type turbulence
models without modification, can and often do yield results that show “turbulent profiles” in
the immediate vicinity of the leading edge even though transition to turbulence occurs much
further downstream.

In order to develop a general linkage between the transitioning laminar flow and the turbulent
flow in a developing boundary layer, it is necessary to have a common mathematical framework
from which the disturbances in both regimes can be described. Previous studies,[6, 7] have devel-
oped such a framework by coupling a deterministic description of the evolution of disturbances
in the laminar regime with an analysis of an ensemble of such disturbances. The approach is
based on the observation that, even in the laminar regime, every flow is subject to an inevitable
uncertainty in initial conditions. Therefore, although each individual disturbance evolves deter-
ministically, a probability distribution must be introduced for the calculation of ensemble mean
properties of the various disturbance statistical moments.

For the boundary-free homogeneous decaying disturbances[6] and for the homogeneous shear(7]
cases studied previously, an arbitrary disturbance mode was characterized by three independent
wave numbers, so that the probability distribution P was necessarily a function of (ki, ks. k3).
The isotropy of the initial disturbance field implied that P was a function of k?. A Gaus-
sian distribution was chosen by appealing to the central limit theorem: i.e., the ensemble of
disturbances contained an infinite number of statistically independent modes. The modes are
statistically independent because there are no nonlinear interactions among them, and according
to the central limit theorem, the probability density function of a large number of statistically
independent entities approaches a Gaussian as the number of entities goes to infinity.



This approach is similar to rapid distortion theory (RDT) in that it is based on linearized
disturbance equations; however the development is different in detail. In RDT, the energy
spectrum tensor and corresponding transport equations that are developed can include the effects
of viscosity and have relied on the homogeneity of the disturbance field. Here, the probability
distribution associated with each initial disturbance mode is given and from that a statistical
database of such a distribution of disturbances is developed. In the previous studies,[6, 7] the
disturbance dynamics focused on homogeneous flows (shear-free flow[6], shear flow[7]) in order
to develop the methodology and to form a linkage with corresponding turbulent boundary-free
flows. Nevertheless, the process can be extended to inhomogencous flows as well, at least over
some spatial range where the amplitudes of the disturbances remain small relative to the mean
flow.

The mathematical methodology developed previously is now extended to a spatially devel-
oping boundary layer with zero, adverse and favorable pressure gradients. This study focuses
on the earliest stages of transition in a low disturbance environment where the disturbance
amplitudes are small enough that nonlinear interactions can be neglected. In this regime the
disturbance field typically involves a wide spectrum of Tollmien-Schlichting (TS) modes and
streamwise vortices. The streamwise vortices make no contribution to the production of dis-
turbance kinetic energy and for small amplitude disturbances they eventually decay, [8] while
the stable TS modes rapidly decay also, leaving a superposition of least stable modes.[9] The
(mean) boundary-layer flow is extracted from the Falkner-Skan family of solutions, and the
disturbance field consists of linear superpositions of three-dimensional disturbance modes that
are solutions of the linearized Navier-Stokes equations. We assume the existence of such a field
without enquiring as to its origin. Each disturbance mode is characterized by a frequency. span-
wise wavenumber, and a streamwise and spanwise position of origin. For each frequency and
spanwise wavenumber, the streamwise wavenumber for the most unstable mode at the particular
Reynolds number is selected. With the Reynolds number, frequency, spanwise wavenumber, and
streamwise wavenumber fixed, the modal “shape” is determined by the solutions of the equations
for the velocity and pressure fields.

The disturbance field consists of modes that could originate anywhere over the boundary.
Since the disturbances have no preferred location of origin, the distribution in frequency and
spanwise wavenumber space of the disturbance field is assumed to be homogeneous in the stream-
wise and and spanwise directions. A probability distribution that is uniform in frequency and
Gaussian in spanwise wavenumber space characterizes such a random disturbance field. The
frequency range is sufficiently broad to encompass the most unstable disturbance modes, and
the wavenumber range is sufficiently broad that the ensemble contains spatially localized three-
dimensional disturbances. While the choice of ensemble is homogeneous, the disturbance modes
streamwise wavenumber and ”shape” retain a dependence on streamwise location. This im-
plies that the disturbance correlations built from the choice of (homogeneous) ensemble and
(inhomogeneous) disturbance modes are also dependent on streamwise location. In order to
enforce the homogeneity condition that the same ensemble of disturbances is generated at each
streamwise location, the probability distribution also contains a delta function in streamwise



position. This probability distribution is used to compute single-point second moments that
characterize the disturbance field as well as its kinetic energy and dissipation rate budgets. It is
worth noting that other more complex (inhomogeneous) disturbances, such as those generated
by three-dimensional mean flows and cross-flow vortices. could be considered within this current
framework. Even in this more complex case, an ensemble of such disturbances would be formed
with an associated probability distribution in the same manner as detailed here for the lincar
disturbance modes. However, in this initial study, the simpler two-dimensional mean flow with
pressure gradient effects will suffice in developing this new formulation.

As noted above, current RANS-type closure models have difficulty in representing pre-
transition flow fields and transition location, particularly with nonzero pressure gradients or
for three dimensional mean flows. Although three dimensional mean flows are not considered
here, the effects of zero, favorable, and adverse pressure gradients on the kinetic energy and
dissipation rate budgets are considered. The information obtained from these balance equations
is needed in order to guide the formulation of a unified model.

2  Wall-Bounded Disturbance Fields

A flat solid-walled boundary located in the (z},z%) plane at 23 = 0 is considered (* variables
are dimensional quantities). The incompressible flow analysis focuses downstream away from
any leading edge effects. Linear disturbance fields are generated which are deviations from
an ensemble-mean boundary-layer velocity field given by the Falkner-Skan family of solutions,
U(Re, 3, z2), applicable to flow fields with zero, adverse and favorable pressure gradients. Stan-
dard boundary-layer scaling is used so that UZ, is the velocity scale, L* = [(2 — 5) 1/’*3:'{/U<;‘o]1/‘2 is
the length scale, and Re (= U2, L*/v*) is the Reynolds number. The effects of pressure gradient
are introduced through the parameter 3: 3 = 0, zero pressure gradient; 3 < 0, adverse pressure
gradient; 8 > 0, favorable pressure gradient.

The three-dimensional, laminar disturbance modes under consideration are bounded solu-
tions of the linearized Navier-Stokes equations. These velocity and pressure disturbance modes

can be written as

ftj(il)z, k3, w, Re) ei(f:llo kide! + k3(xz—z30) — wt) (1)
p(.’EQ, k33 w, Re)

where (k1(Re,w, k3), 0, k3) is the wave vector in coordinate directions (z1, z2, z3) associated with
the most unstable mode, (k; complex and k3 real), w is the (real) frequency, and (z10,Z30) is
the position where the disturbance mode originates. Note that the disturbance mode shapes
i; and p depend on streamwise position through their Reynolds number dependence. Since k3
is independent of position, the phase e~*3%30 can be absorbed into 4; and p. In the analysis
that follows, it will also be convenient to analyze the results in terms of the displacement
thickness Reynolds number Rey (= UZ8*/v*) where the displacement thickness is given by
6*=L* [{FU(1 - U)dz,.



These modes are the solutions of the continuity and momentum equations given by

i
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dxo
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where U(Re, z7) is the mean (streamwise) velocity. As seen from Egs. 2 - 5, it is assumed
throughout that 4;, p, and k) are only weakly dependent on z; so that their derivatives with
respect to z; can be neglected. These equations are combined to obtain, first the Orr-Sommerfeld
equation for the wall normal velocity component 4y with complex eigenvalue &,

d*U -
L%y = iRe (kiU — w) L1y — ik Re 2 U3 (7)
2

and second, the Squire equation for the normal component of vorticity,

{o = ihkstiy — ik1 3. (8)
d*Gy
dz}

Equa’mons (7) and (9) are solved subject to the boundary conditions 4y = (dio/dzy) = 0.
C2 =0atzo =0, and Gg — 0, ( = 0 as y — co. Equation (7) is solved using the compound
matrix algorithm employing a fourth order Runge-Kutta integration combined with an iteration
on the eigenvalue. Once the eigenvalue, ki, and eigenfunction, iy, are found, Eq. (9) can be
solved for (. This equation is quite stiff so it is solved by an implicit method; the second
derivative is approximated by a fourth order stencil and the resulting penta-diagonal system is
solved by a generalized Thomas algorithm. With 4y and ¢» known, Egs. (2) and (8) are solved
simultaneously for #; and 3. Finally, with the velocity @ known, the pressure is found from
(3).

The velocity and pressure disturbance fields can be constructed from these disturbance mode

solutions by considering an ensemble of linear superpositions of modes with initial mode ampli-
tudes ®(w, k3, z10) so that

+ [iRe (w—kU) - fc?] Cy = ikyRe (5%) i (9)

Ty _
(x,1) /dw dkzdz g ®(w, k3, T10)4: (22, w, k3, Re)e (ffm kudzy+ kszs = wi) (10)

kidr|+ kary — wt)

p(x,t) /dw dkzdz g ®(w, k3, z10)p(z2, w, k3, Re)e z(f (11)
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This ensemble is described by a probability distribution for the amplitudes so that their mean.
(®(w, k3,Z10)) is zero, and covariance is homogeneous (x; and z3—directions) and stationary,

(8" (w. k3, 710)B(W', Ky, T10)) = 8(w — ")d (ks — ky)d(z10 — 29) P(w, K3, Z10)- (12)

Assuming that w. k3, and z ¢ are independent random variables, the probability density P(w, k3. z)

is partitioned as
P(w. k3, 710) = Py(w)Pi,y (k3) Pz (210) (13)

The distribution in w cannot be Gaussian because w does not take negative values. Negative
w’s, which correspond to upstream propagating modes. are all heavily damped. If a Gaussian
distribution in w was taken with positive mean, this would introduce a preferred frequency. The
probability density P, (w) is therefore assumed to be that of band limited white noise having a
flat spectrum and a corresponding probability distribution,

1
P(w) = m wrp <w < WH (14)

0 otherwise
where w; and wy are chosen to encompass the region of disturbance growth computed from linear
stability theory. As discussed in the Introduction, for each frequency and spanwise wavenumber,
the streamwise wavenumber for the most unstable mode at the particular Reynolds number is
selected. Figure 1 shows the growth rate contours obtained from the linear stability analysis
for the zero pressure gradient case as a function of w and Reg for different values of k3. The
frequency range used must be large enough to encompass both growing and decaying modes
over the corresponding k3 and Reynolds number ranges. In the calculations, w was chosen to
lie in the range 0.04 to 0.08 with the step in w between these limits being 0.001. For the zero
pressure gradient case, it can be seen from Figure 1 that, for the range of k3 values shown in the
figure, the lower frequency modes will be damped at the smaller values of Reg and the higher
frequency modes will be damped at the larger values of Res. The results reported here are
relatively insensitive to the range of values of w provided that it is not too narrow.

For Py, (ks), the central limit theorem argues in favor of a Gaussian and such a Gaussian
distribution should have a large variance in order to encompass a sufficient wavenumber range of
energetic oblique modes. The disturbances should be localized in the spanwise direction so this
is a further argument for a relatively large variance. Therefore the probability density Py, (k3)
assumes a Gaussian form

1 k3
Py, (k3) = Wexp 5,2 (15)

with variance o2, corresponding to a mean spanwise, spatial extent of the disturbances given
by o~!. The results were found not to vary when a sufficiently large variance in k3 was used.
For example, results were essentially unchanged for values of 0 > 0.1 that corresponded to a
spanwise, spatial extent of the disturbances of 66* and less. For this study, the ks values ranged
from —0.3 to 0.3 with a step size of 0.001. This range was sufficiently broad so that the values

of Py, (k3) at the ends of the range were small.



As discussed at the outset, it is not possible to uniquely identify a position of origin for
the disturbance field. Thus, a homogeneous ensemble of disturbances is considered and its
dynamic behavior at various streamwise locations is examined. Since the mean velocity in
the boundary layer is inhomogeneous in the streamwise direction, the probability distribution
must also depend on the streamwise position of the origin of the disturbance zyo. Thus. a
probability density function Py, is needed that generates the same ensemble of disturbances at

each streamwise location z;. Such a distribution is given by
Pro(z10) = d(z1 — 10) (16)

This wall-bounded disturbance field contrasts with the homogencous fields[6, 7] studied pre-
viously. In this case an ensemble of superpositions of most unstable modes is considered rather
than an ensemble of superpositions of all modes that was considered in the homogeneous case.
For a given (w, k3). there is a unique k; corresponding to the most unstable mode, so the prob-
ability distribution depends on w and k3 but not kj.

In further contrast to the homogeneous cases considered previously,[6, 7] where the evolution
of the disturbance correlations was studied, in this inhomogeneous case the same ensemble is
created at each z; and the instantaneous dynamical behavior of the disturbance correlations is
studied. If the boundary-layer disturbance field were allowed to evolve, the differential growth
or decay rates of the modes would lead to a rapid loss of streamwise homogeneity introducing
an arbitrary element into the analysis. It is, therefore, more useful to consider an instantaneous
snapshot of the dynamics.

Based on experimental results with the zero pressure gradient flat plate boundary layer,[10]
transition would begin between Re, =~ 5 x 10° to 6 x 105 and end between Re; = 3 x 10°
and 107. In terms of Rey, the beginning of transition would occur between 470 and 515 while
the end would occur between 1150 and 2100. The calculations in this study cover the range
150 < Rey < 2000 which should encompass the transition range.

3 Disturbance Velocity Correlations and Dissipation Rate

It is now possible to form the second-moment correlations from the disturbance velocity and
pressure fields given in Egs. (10) and (11). For example, the disturbance stress tensor is given
by

1
rj(z,z2) = 3 <u;‘u]~ + uiu;>

1 . Lk -
= 5 /dw dkg Pw(w)Pkg (k3) (ul—uj + uiuj) ) (11)
with the disturbance kinetic energy, K = 7;;/2, and the disturbance isotropic dissipation rate is

given by
) . 1 a’u,j au;
6(:1’17'1:2) - Ee. <allk a.Ek>



1
= ﬁ‘/dw dkg Pw(w)Pk;}(kS)

ck e
X [(|k1|2 + k§) Wiy + 37—;: %1 (18)
Note that, although streamwise homogeneity in the choice of ensemble has been maintained, all
disturbance correlations retain a dependence on z; through either a direct Reynolds number
dependence (as in the disturbance dissipation rate) or through the implicit Reynolds number
dependence of @; and %,. From these quantities, it is now possible to construct a detailed
mapping of the ensemble-averaged disturbance field.

The necessarily low-Reynolds numbers of interest here suggest that the various disturbance
correlations be analyzed in terms of wall units. The friction velocity u; needed in the scaling
is determined from /77, where the wall shear stress 7., is simply proportional to dU*/dz} at
z3 = 0 with U*(z2) obtained from the solution of the Falkner-Skan equation with pressure

* 2 *
= (5) = (o) ()™ (2)
“T‘(Ugo) _(UgoL*> (dm z=0  \Re/’ (19)

The corresponding scaled wall normal coordinate z3 is then,

= ()= () (B (2) - swrre

v* L* v* Re

gradient parameter 3,

where both Sy and Re are functions of 3. (All the variables to be presented in the figures to
follow are scaled and shown in wall units.) In order to compare results at different values of Rey,
the kinetic energy of the disturbance field at each Reg is normalized to unity. This normalization
determines the overall scaling of all other quantities.

Before examining the disturbance energy and dissipation rate budgets, the different compo-
nents of the disturbance stress tensor are discussed. Disturbance ensembles at two different Reg
values are chosen. The first is Reg = 393, which corresponds to a region just downstream of
the neutral position; here the disturbances contain both components that grow and decay but
DK /Dt is negative. The second value is Rey = 1040, which characterizes a region where almost
all disturbance components are growing and DK /Dt is positive.

Figure 2 shows the behavior of the disturbance normal stress components across the boundary
layer. The 71; and 733 components both reach peak values near z; =~ 25. At Rey = 1040, Figure
2b, the distributions of all three components are broader in xj than at Rey = 393, Figure
2a. The peak value of both 71, and 792 are also both slightly greater at Reg = 1040 than at
Rep = 393 but the peak value of 733 is slightly less. An interesting contrast to the fully turbulent
case, even at these low-Reynolds numbers,[11] is the behavior of the 792 and 733 components.
Unlike the turbulent case where 799 > 733 in the inner part of the layer, the behavior here is
just the opposite with 733 > 792. The streamwise 71; component still dominates these other two



components over the inner part of the boundary layer. The 72, component continues to increase
away from the wall and eventually decays at a slower rate than either the 71 or 733 components.
and becomes the dominant component in the outer part of the boundary layer.

The shear stress distribution at four values of Reg, 149, 393, 627 and 1040, is shown in Figure
3. The production of kinetic energy is proportional to —7)2 so that a negative 712 means that
the the transfer of energy is from the mean flow to the disturbance field while a positive 7>
means that the transfer of energy is from the disturbance field to the mean flow. The location
at which Reg = 149 is upstream of the neutral location, all components of the disturbance
field are decaying at this position and the shear stress is positive across the entire boundary
layer. At Reg = 393 the shear stress is negative in the near wall region and positive in the
outer region of the boundary layer, being predominantly positive. A further increase in Ieg to
647 results in an increase in the size of the region where 7, is negative; here the disturbance
field is a mixture of growing and decaying modes and DK/Dt ~ 0 throughout the boundary
layer. At Rey = 1040 the shear stress is negative across the cntire boundary layer and DK/Dt
is positive. This change in the distribution of 712 with increasing Reg mirrors the change from
a region where all of the disturbance components are decaying to one in which almost all of
them are growing. The distribution of 712 with z3 at Rey = 1040 is typical of the larger
Reynolds numbers. Calculations were performed up to values of Rey =~ 2000. Over the range
1000 < Reg < 2000, the peak negative value of 712 and its :Lj_ location changed by much less
than 1%. Increasing Reg from 1000 to 2000 only results in a very slow widening of the long “tail’
in the outer portion of the boundary layer; at Reg ~ 1800 it extends to x§ = 150 in contrast to
z3 =~ 110 at Reg = 1040. The low Reynolds number results cannot be used for RANS modeling
but were included in order to illustrate the effects of varying the Reynolds number. As these
results show, the shear stress varies with Reynolds number up to Reg = 1000 and is relatively
insensitive to further increase in Rey.

With the Falkner-Skan family of solutions it is straightforward to introduce the effect of
pressure gradient into the analysis through the variation of the parameter 8. Calculations have
been performed for three values of 3: 0.00, —0.15, and 0.15. As discussed previously, the first
of these, B = 0.00, yields the zero pressure gradient Blasius mean flow profile. With g = —0.15,
the boundary layer faces a moderately strong adverse pressure gradient (the separating Falkner-
Skan flow occurs for 3 = —0.198840); the mean flow wall shear stress is approximately 46%
of that of the zero pressure gradient boundary layer. Finally, 8 = 0.15 produces a moderately
strong favorable pressure gradient with the mean flow wall shear stress about 40% greater than
that of the zero pressure gradient boundary layer. Thus, the three values of 3 span a reasonable
range of mean flows.

Figure 4 shows the effect of imposing an adverse (3 < 0) or favorable (8 > 0) pressure
gradient at Rey & 1040; Figure 4a is a plot of K versus xz Figure 4b is a plot of K versus T3
In the three cases shown, the total disturbance energy within the boundary layer is normalized
to unity. The adverse pressure gradient thickens the boundary layer which is reflected in the
broadening of the kinetic energy distribution relative to the zero pressure gradient (3 = 0) case.
A local minimum in the distribution now exists at 25 ~ 30 and this corresponds to the inflection
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point in the the mean velocity profile caused by the adverse gradient. In contrast. the favorable
pressure gradient causes a thinning of the boundary layer which is reflected in the movement of
the peak of the kinetic energy distribution closer to the solid boundary at ry = 20.

The effect of pressure gradient on disturbance dissipation rate is shown in Figure 5. Unlike
the kinetic energy, the dissipation rate is essentially unaffected by the change in pressure gradient.
The dissipation rate peaks at the boundary and is confined to a very narrow region near the
solid boundary with the maximum value at the boundary only slightly affected by the change
in 3.

In the fully turbulent case, it is not uncommon to exploit energetic equilibrium (producion
equals dissipation) conditions that exist across the boundary layer. For example, in the log-layer
region, the production-to-destruction equilibrium can be used as a rationale for a Boussinesq
eddy viscosity relation between the turbulent shear stress and mean velocity gradient. While
such a production-to-destruction balance is unlikely to occur in this linear disturbance region,
it is nevertheless of interest to see if a similar eddy viscosity relation can be established here.
Figure 6 shows the behavior of —712/(dU/dz3) across the boundary layer as a function of
pressure gradient. For the zero pressure gradient case, this disturbance mode viscosity increases
with distance from the wall and peaks near 2 = 25 — consistent with the distributions of the
other disturbance quantities. In an adverse pressure gradient, the disturbance mode viscosity
level increases with the peak moving farther away from the solid boundary. Nevertheless, in
both cases the distributions near the wall (z7 < 10) nearly coincide. The favorable pressure
gradient case is not shown here since DK/Dt < 0 and the shear stress (production) is positive
(negative) (cf. Figure 7).

The ensemble of disturbances described in the previous section must also satisfy a dynamic
balance derivable from the linear Navier-Stokes equations. The dynamics of the disturbance
field can be better understood through an analysis of the balance equations derivable for the

disturbance kinetic energy and dissipation rate.

3.1 Disturbance energy budget

The derivation of the transport equations for the disturbance kinetic energy, K = 7 /2, follows
directly from the linearized Navier-Stokes equations coupled with an average over an ensemble
of disturbances described by the distribution P(w, k3, z10). The resulting transport equation

can be written as

DK
—_ =P - a+7D 21
Br P—e+ I+ (21)
where

daUu
P = —-Tia5— (22)

dzy
1 0 . . .
I = —§a—£;<ujp+ujp> (23)
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p - L I (21)
Re d:Ejd.Ej

are, respectively, the disturbance energy production, pressure-transport of disturbance energy.

and viscous diffusion of disturbance energy. The disturbance energy dissipation rate is € given

in Eq. (18). Note that in the subsequent figures, DK/Dt is not a streamwise difference but is

computed as an instantaneous quantity according to an expression analogous to Eqgs. (17) and

(18).

Using this disturbance energy equation, it is instructive to examine the behavior of the
disturbance ensemble at different streamwise locations. At low Reg (not shown) where there
are no growing modes in the ensemble, the disturbance kinetic energy decays (DK/Dt < 0)
because production, the contribution from dissipation and viscous diffusion are all negative.
Only pressure-transport contributes positively to the energetic balance over most of the layer.
Very near the wall, the dynamic balance is between the kinetic energy dissipation rate and
viscous diffusion, which is analogous to the fully turbulent case very near the wall.

Figure 7 shows the energy budget across the boundary layer at the two different values of
Reg. At each value of Rey, the distributions of energy production, dissipation rate, pressure-
transport, and viscous diffusion are shown. Figure 7a shows the encrgy balance at Rey = 393
a region of the flow where some unstable modes are included in the ensemble. At this value of
Rey, there exists regions of the boundary layer where, for example, production is positive and
pressure-transport is negative although overall DK/Dt < 0. Very near the wall the balance is
predominantly between viscous diffusion and disturbance dissipation rate. Figure 7b shows the
energy balance at Reg = 1040. At larger values of Reg, the qualitative features of the energetic
balance remain unchanged with only the tails of each distribution decaying more slowly with T
reflecting the downstream boundary-layer growth. At this and larger values of Rey, the kinetic
energy is growing with DK/Dt > 0 across the boundary layer. Again, the near wall balance is
between viscous diffusion and disturbance dissipation rate. It is apparent from Figure 7b that,
outside of the very near-wall region, the production and pressure transport have opposite sign
and are nearly proportional to one another although viscous diffusion also contributes to the
balance. It is possible to show (see Appendix) that this proportionality between the pressure-
transport and energy production can be established through an analysis of the Poisson equation
for the pressure fluctuations.

The effect of imposed pressure gradient on the disturbance kinetic energy budget is shown in
Figure 8 at Reg ~ 1040. In the adverse pressure gradient case (4 < 0), Figure 8a, the dynamic
balance between the terms in the transport equation remain unchanged; however, there is a
broadening of the distribution across the layer and an overall increase in the amplitude levels
associated with each term except the disturbance dissipation rate. Note that the scale in Figure
8a is five times that in Figure 7b and Figure 8b. For the favorable pressure gradient case shown
in Figure 7b, the dynamic balance is significantly altered qualitatively from the zero pressure
gradient case. The dynamic balance is more consistent with the Rey = 393 zero pressure gradient
case shown in Figure 7a. At this streamwise station, the ensemble of disturbances included both
stable and unstable modes, but the overall balance showed a decay of disturbance kinetic energy
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across the boundary layer.

These results confirm that even though the individual disturbance modes satisfy the linear
Navier-Stokes equations, an ensemble of such disturbances can display a complex range of ener-
getic dynamics which characterize the early stage transition regime of a developing flow. In the
next section, the dynamic balance of the disturbance dissipation rate is examined.

3.2 Disturbance dissipation rate budget

The transport equation for the disturbance dissipation rate ¢ is also directly derivable from the
linearized momentum equations. The resulting form is given by

D
5 =P PP -Y+ 4D (25)
—_————
Pe
where
1 dU [ ou] Ou ouy Ous
1 1 2 1 2
_— e 7 26
Pe Re dz <8xj Jz; + oz; ij> (26)
pr _ _ 1 dU [04 Sy Ou; O (27)
€ Redzxy \ Oz, Ozy Oxy Oz9
1 d?U du ou}
3 * 1 1
_ b ur  Ou 28
Pe Re dz3 <u2 Oxs T 8m2> (28)
2 O%ut 5
T = J J 29
Re? <8xk8mr szaxr> (29)
1 8 /O0u 9p Ou; Op*
I = —— — (2 =4+ 21 — 30
Re 3.’12_,‘ <a$k alEk + 8$k al‘k ( )
1 0%
. = — 31
P Re 83:1-6;1:,- ( )

are, respectively, mixed production, production by mean velocity gradient, gradient production,
destruction, pressure-transport, and viscous diffusion. (The notation used here is consistent
with the notation used by Rodi and Mansour.{13]) Analogous to the treatment of the DK/Dt
term, De/Dt is not a streamwise difference but is computed as an instantaneous quantity.
Figure 9 shows the balance of terms across the boundary layer for the disturbance dissipation
rate budget. With the exception of the destruction and viscous diffusion of dissipation, which
essentially balance out across the entire boundary layer, all terms are negligible. This behavior
suggests that in the absence of a production mechanism associated with vortex stretching, a
nonlinear effect, direct dissipation of disturbance energy is confined to regions in close proximity
to the wall. In contrast with the disturbance energy balances, the same (qualitative) dynamic
balance is achieved for the two values of Rey shown and was also found for all values of Rey
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at which these calculations were carried out (Rey < 2000) The only change that was found
was the broadening of the distribution across the layer with increasing Reg. While energetic
equilibrium (DK/Dt = 0) only occurred at a single value of Reg, Figure 9 shows that De/Dt
is very small and =~ 0 compared to the dominant terms, destruction and viscous diffusion of
dissipation, throughout the entire range of Rey values studied. In fact, it was found that De/Dt
was always at least three orders of magnitude smaller than the dominant terms.

The effect of pressure gradient on the disturbance dissipation rate balance is shown in Figure
10. Unlike the disturbance energy balances shown in Figures 7 and 8, the dissipation rate
dynamics is insensitive to the imposition of pressure gradient on the flow. This once again
shows that the disturbance dissipation rate is not a (significant) contributor to the disturbance

dynamics in the early stage transition regime.
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4 Conclusions

The dynamics of an ensemble of disturbances in boundary-layer flow with and without pressure
gradient has been studied. The individual disturbance modes are solutions of the linearized
Navier-Stokes equations and the probability density function associated with the ensemble ac-
counts for distributions in spanwise wavenumber, frequency and initial spatial position. Such an
ensemble represents the early stages of a transition disturbance field which ultimately leads to
a fully turbulent field. The representation used here has been shown in previous homogeneous
studies[6, 7] to form a unified mathematical framework between the two fields.

An analysis of the dynamic balance in the disturbance kinetic energy and dissipation rate
equations has shown behavior which contrasts with the fully turbulent case at both low Reynolds
numbers and in near-wall regions. This new insight is critical in properly representing the dy-
namics in the linear disturbance region. While no self-similar behavior is reached, the qualitative
features of the dynamic balance become independent of Rey and show that energy production.
pressure-transport, and viscous diffusion dominate across the boundary layer with a small con-
tribution from dissipation rate. The dissipation rate only plays a role in very close proximity to
the solid boundary where it balances the energy diffusion.

The dynamics of the disturbance dissipation rate transport are straightforward. In the
absence of nonlinear interactions, there is essentially no production mechanism present so that
all the dissipation rate originates at the solid boundary. The disturbance field dissipation rate is
unaltered in the region (De/Dt = 0) because a dynamic balance between the dominant terms.
destruction and diffusion, is achieved across the boundary layer.

The results obtained here provide new insight into the dynamic balance of an ensemble
of disturbances in the early stages of a (naturally) transitioning boundary-layer flow in a low
disturbance environment. Since current RANS-type closure models are not capable of predicting
transition region location without modification, the information here can be used to develop
improved transport equations for the ensemble of disturbances and subsequently coupled to
corresponding transport equations valid in the fully turbulent regime..



Relationship Between Disturbance Energy Production and Pres-
sure Transport

From the results presented in Sec. 3.1 and Figure 9. it was shown that a close relationship exists
between the production of disturbance energy and pressure-transport of disturbance energy. In
this appendix, the relationship will be derived and the proportionality coeflicient between the
two terms estimated.

From Eqs. (17) and (22), the production of disturbance energy can be written as

1, . dU

and the pressure-transport IT is defined by Eq. (23).
In the linear regime, the pressure Poisson equation is given by

Buj oU; Ouy dU

2 — _9g Tl 33
vy 63:1 axj 283:1 dro’ (33)
with solution
Oug dU Op(x') 0G(x — x')
= —9 3.7 / |: - _ ! ) 4
p(x) / P Clx—x) 577 T~ [ 48 |Glx—x) =55 pla) (34)

where G is the Green’s function. The surface term in Eq. (34) does not contribute to II since
u; = 0 on the no-slip boundary and at infinity.

In the development of turbulent closure models for higher-order correlations involving the
fluctuating pressure,[12] it is assumed that all second derivatives of the mean velocity are small
relative to the mean velocity gradient. This same assumption is invoked here so that Eq. (34)
can be approximated by

~ ' 8U2_ , 0G(x —x') '
s~ -2 [ Gl R T [ By @9

With this expression, the pressure-transport term can be written as

Ix) =~ < 0 (G | )

9 ,0G(x—x) ,
+“j(x)5g (sz/dS TUQ(X )>> (36)

For j # 1, 3*G(x — x')/dz;0z, is odd in z} while u, is a slowly varying function of z}. This
implies that the integrals in (36) vanish. For j = 1, Eq. (36) can be written as

H(X) ~ d$2< * (/aﬂ /Q__G____.._) 2(x/)>
Fu(x < / dx' d’jl"‘)u;(x'))>. (37)
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The free-space Green’s function — (47 |x — x|) ™" is used so that

and from symmetry this yields

82 / 3 ' .
6)acjaij'(x——x)—(S (x —x), (38)
2 "o §3(x — x') .

This allows Eq. (37) to be written as

I1(x)

Q

ﬂ <u’{(x) (/ d3x' 6% (x — x’)uz(X')) + 1 (x) (/ d’x' % (x — x’)ué(x’))>

" (w3 (ua0) + 1 (s () = ~5P (10)

From the results shown in Figure 7d, for example, the integrated ratio across the boundary layer
between the production and pressure-transport of disturbance energy is ~ —1 which is in close
agreement with the result obtained in Eq. (40). The difference can be easily attributed to the
assumption of neglecting the second derivative of the mean velocity in Eq. (35). For example, in
the zero pressure gradient case at :1:; = 25 with Reg = 1040, the second derivative of the mean
velocity is about one-quarter of the first derivative (in magnitude). Further out in the boundary
layer, the second derivative becomes somewhat larger than the first derivative (in magnitude).
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Figure 1: Zero pressure gradient growth-rate contours
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Figure 2a: Variation of disturbance normal stress components across boundary layer (zero pres-
sure gradient) at Reg = 393.
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Figure 2b: Variation of disturbance normal stress components across boundary layer (zero pres-
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Figure 7a: Disturbance energy balance (zero pressure gradient) at Rg = 393.
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Figure 10b: Effect of a favorable pressure gradient on disturbance dissipating rate balance.
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